
written by
Quest Software, Inc.

Improved J2EE Performance and User
Experience with Pre-production Testing

White Paper

WPA_ImprJ2EEPrmAndUserExprnc_091306_NH

© Copyright Quest® Software, Inc. 2006. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software
described in this guide is furnished under a software license or nondisclosure agreement. This
software may be used or copied only in accordance with the terms of the applicable
agreement. No part of this guide may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording for any purpose other
than the purchaser's personal use without the written permission of Quest Software, Inc.

DISCLAIMER

The information in this document is provided in connection with Quest products. No license,
express or implied, by estoppel or otherwise, to any intellectual property right is granted by
this document or in connection with the sale of Quest products. EXCEPT AS SET FORTH IN
QUEST'S TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS
PRODUCT, QUEST ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS,
IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST BE LIABLE FOR ANY
DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF QUEST HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. Quest makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document and reserves the right to make changes to
specifications and product descriptions at any time without notice. Quest does not make any
commitment to update the information contained in this document.

TRADEMARKS

All trademarks and registered trademarks used in this guide are property of their respective
owners.

World Headquarters
5 Polaris Way
Aliso Viejo, CA 92656
www.quest.com
e-mail: info@quest.com

Please refer to our Web site for regional and international office information.

Updated—February 2005

http://www.quest.com/
mailto:info@quest.com

i

ABSTRACT

Quest Software knows the expectations customers have for IT investments are not
always met.

That's why we develop innovative products that help our customers get more
performance and productivity from their applications, databases and infrastructure.

Through a deep expertise in IT operations and a continued focus on what works
best, we help our customers meet higher expectations for enterprise IT.

With Quest Software, you can expect more.

ii

CONTENTS

OVERVIEW ..1
INTRODUCTION ..2
THE EVOLUTION OF PERFORMANCE TUNING AND ANALYSIS4

CHANGING MARKET DYNAMICS .. 5
UNIQUE CHALLENGES OF JAVA DEVELOPMENT AND PERFORMANCE MANAGEMENT................ 6
WALKING THE TALK: THE ITERATIVE MODEL IN PRACTICE .. 8
WHEN TO BEGIN TUNING... 9
WHO SHOULD BE RESPONSIBLE ... 9
ADVANTAGES ... 10
JPROBE SUITE.. 11
JPROBE PROFILER ... 12
JPROBE MEMORY DEBUGGER... 13
QUEST PERFORMASURE... 13

THE METHODOLOGY ..15
CONCLUSION ..16
ADDITIONAL RESOURCES ...17
TRAINING ...17
ABOUT QUEST SOFTWARE, INC. ..18

CONTACTING QUEST SOFTWARE... 18
CONTACTING QUEST SUPPORT... 18

White Paper

1

OVERVIEW

This paper will argue that application performance tuning and analysis should occur
regularly, repeatedly and earlier in the application life cycle. What we call an
“iterative” approach to tuning and analysis entails addressing performance
problems before they accumulate, overwhelm and become costly. Responsibility for
tuning must fall to developers, who need to treat tuning and analysis as elements
of the development process. This approach opposes a traditional view of tuning as a
process separate from construction, or one assigned to a QA team unfamiliar with
the code and life cycle construction phase.

We view the need for a shift to this iterative approach to be motivated by:

• Changes in how consumers view performance and reliability

• Changes in customer requirements and in how software is brought to
market

• The exploding presence of Java in the enterprise market, particularly in the
server-side arena

These motives reflect the growing realization that critical software systems are strategic
assets that must be protected and nurtured throughout development and use.

This paper will also illustrate how JProbe Suite and PerformaSure provide a full
range of testing procedures that, when utilized throughout the development stage,
make iterative testing a best practice. It will show how JProbe Suite’s accuracy,
breadth, detail and ease of use enable developers to not only determine where
problems are occurring, but also refine units of code as they are completed. This
mitigates performance problems before they reach a critical level. It will show how
PerformaSure, when used in a staging environment, will allow users to identify
performance issues across their entire J2EE stack prior to production hand-off.

Improved J2EE Performance and User Experience with Pre-production Testing

2

INTRODUCTION

As Java and custom Web applications (J2EE) continue to become the Internet’s
dominant programming environment, the issues of performance and reliability
remain a major concern. As the Internet continues to grow, companies are pushed
to produce software faster than ever, inevitably resulting in products with more
bugs. According to Brian Bershad, associate professor of Computer Science at the
University of Washington, “The release schedules are crazy. It’s not that the people
(developers) aren’t smart; it’s just that they don't have time to think.”

Whether the goal is to create an online trading system, an e-business site, a
banking system, a portal application or a customer relationship management
system, poor performance can translate into tremendous economic cost. Moreover,
end users are beginning to expect the same levels of performance from their online
applications as they do from their automobiles and appliances. Performance glitches
are simply unacceptable.

By “poor performance”, we mean the presence of coding and configuration
irregularities that result in such things as inefficient memory usage, performance
bottlenecks, thread deadlocks and resource saturation. If these irregularities occur
while an application is running, they can lead to frustrating delays, inaccurate
transmissions, screen freezes and even application crashes. Unconstrained memory
growth, for example, can dramatically slow an application, preventing a stockbroker
from executing a trade at a given moment. A performance bottleneck can cause
frustrating delays as a customer attempts to pay a bill online.

Missed deployment and delivery dates, budget overruns, failure to comply with
industry regulations, interrupted workflow, frustrated customers are all potential
byproducts of application performance flaws. However, they can be prevented with
the right products and an effective and informed risk management strategy that
encompasses best practices in development and QA.

A best practice imperative for managing the risk of performance deficiencies
centers on the issue of scheduling. For reasons that we will explore in the following
sections, performance tuning and analysis should be integrated throughout the
development stage rather than deferred until building is completed. Moreover,
performance tuning and analysis should be viewed as aspects of a preventative
procedure rather than a purely responsive one. When a coding problem is detected
after deployment by an end user, it is not only more costly and time consuming to
repair, it can also result in negative user perception. The push to produce cost-
effective but reliable software products demands that coding problems be
proactively identified and resolved throughout the development process.

This represents both a shift in procedure and in thinking about the overall
importance of performance and how applications are designed, developed and
brought to market.

White Paper

3

In order to illustrate and explain this shift, this paper will address:

• The conditions historically responsible for relegating performance tuning
and analysis to Quality Assurance (QA) and acceptance phases for
representing it as a one-time, responsive measure.

• The current conditions that make earlier performance tuning and analysis
not only feasible but also optimal.

• Procedural best practices for performance tuning and analysis, including
timing, personnel and methodology.

• The value of JProbe Suite and PerformaSure in optimizing development
resources and time, while delivering higher performing Java (J2EE)
applications to production.

In summary, a best practice for performance tuning and analysis is to make it a
fully integrated, iterative and systematic process executed during the development
and QA stages of the application life cycle.

Improved J2EE Performance and User Experience with Pre-production Testing

4

THE EVOLUTION OF PERFORMANCE TUNING AND

ANALYSIS

Given the dramatic impact of performance flaws, one would expect performance-
tuning efforts that maximize J2EE application reliability would be included in the
overall life cycle. One would also expect that dependable strategies to ensure
application performance and reliability would be commonplace and built into the life
cycle process.

In a survey by Quest Software, 91 percent of respondents agreed that analysis
should take place during development. Yet 53 percent admitted that this rarely
occurs. Why?

Unfortunately, application performance still tends to be viewed as a second-level
priority, behind such things as functionality, ease-of-use, compliance with GUI
standards, maintainability and development time. Largely because of its lowered
priority, performance tuning and analysis is treated as a separate process activity
tacked onto the end of the development stage of the application life cycle, and
generally confined to QA (in conjunction with load testing). Unfortunately, most
companies do not specify performance requirements in enough detail to perform
adequate testing. Due to scheduling challenges, the time for manual performance
testing along with manual functional testing is greatly compressed and sometimes
skipped.

How did this approach take hold? In part, the requirements gathering phase for
projects is much more difficult with respect to specifying exact load and scalability
requirements. Also, performance and throughput is more important than ever
before due to the increased use and availability of these applications worldwide.
Unlike functional testing, performance testing requires more developer involvement
to determine the root cause of issues and possible improvements. Performance
issues are typically more difficult to diagnose than functional issues.

Managers need to understand the impact, cost and disruption caused by bugs
caught in production. Evidence is mounting that the detection and removal of a bug
before the product goes GA can save from 10 up to 1000 times the cost of repairing
it afterwards. Quest has observed that in most cases where performance problems
are detected in production, the development team is called in as J2EE experts to
help quickly diagnose and resolve the issue. This practice is a major disruption for
development managers trying to meet a deadline.

As customers strive for higher levels of productivity, they demand increasingly
higher levels of performance and reliability, particularly in the area of Internet
applications where the financial implications of unreliable code are magnified.

White Paper

5

Changing Market Dynamics

In addition to the reasons we’ve described, a shift in how software products are
brought to market also favors a revision of the traditional approach to performance
tuning and analysis.

Many medium-to-large size companies are looking to outsource portions of their
development projects to countries with a lower cost of labor. This outsourcing
arrangement can add additional complications when it comes to ensuring a high
performing application. Companies need to have a way to validate the performance
of applications developed abroad, prior to deployment into production, when the
code is released from development. Standard developer-focused solutions, like
JProbe Suite, are perfect for the company receiving the outsourcing, but not as
appropriate for company doing the outsourcing, as they did not write the code. The
company doing the outsourcing needs a higher-level tool that can be used to look
across the entire J2EE stack and identify performance bottlenecks—this is the
perfect place to use PerformaSure. Clear communication between the company
outsourcing code and the company receiving it is imperative to ensure that
performance requirements are met. The receiving company should use a tool like
JProbe Suite and provide the company who outsourced to them with reports on
performance testing progress, discovered bugs, etc.

The market is lowering its tolerance for defects. It is also demanding larger, more
complex applications (ones that rely on a great deal of componentized code written
by many different authors). Given this tension between a decreasing tolerance for
defects and an increasing demand for functionality in a shorter time frame, it is
necessary to re-examine the place performance tuning and analysis occupy in the
application development life cycle.

Software organizations are responding—partially. They are revising their
deployment criteria and moving to smaller, more frequent project iterations with
earlier delivery dates. They are also taking advantage of the fact that object-
oriented code has an inherent capacity for modularization. This allows for the
release of parts of applications as code can be tested prior to the completion of a
project. In other words, the need for speed to market and the advent of modularity
are pushing tuning and analysis back in the application life cycle. But are they being
pushed back far enough? Are they being made truly iterative? And is responsibility
for them—and the tools to carry them out—being put into the hands of all
developers working on a particular project?

Improved J2EE Performance and User Experience with Pre-production Testing

6

Before examining how object-oriented code (Java and J2EE in particular)
encourages the use of an integrated, iterative approach, let us summarize what we
have said about the current performance-tuning environment. Because
performance tuning and analysis require valuable time and have not been viewed
as critical requirements (and because organizations often look to hardware
upgrades to solve performance problems) there is a tendency to make tuning a low
and expendable priority and to accept the tradeoff of compromised quality. In
today’s business environment where applications have to be built and deployed
quickly to capitalize on the rapid changes in business processes and market
conditions, this has taken on the look of an acceptable bargain. On the other hand,
the push for speed to market—along with the increasing complexity of applications
and the explosive growth of object-oriented languages like Java (J2EE) —has meant
that organizations are looking for alternatives. They’re trying to find ways to
achieve higher performance quality without compromising delivery dates.

In short, the current environment is one of:

• An increasing trend to outsource portions of development

• A growing, opposing tendency on the part of consumers to be intolerant of
application bugs

• An awakened possibility of modularizing applications and then deploying
parts of them, made possible in large part by the growth of object-oriented
languages

Unique Challenges of Java Development and
Performance Management

Java is uniquely suited to address the tension between the market’s push for early
delivery and its conflicting intolerance of bugs. Object-oriented languages like Java
more readily allow for modularization, and thus make earlier, partial deployments
possible. This encourages early, integrated, iterative tuning and analysis. However,
certain challenges should be highlighted:

The increased use of components and frameworks requires more performance
testing to ensure that these components and frameworks perform acceptably for
use cases. Tools such as JProbe Suite and PerformaSure provide technical staff with
necessary insight into how the components interact and where performance
bottlenecks.

The Garbage Collector in the JVM does not eliminate all memory leak occurrences.
Development teams need a tool to help them understand what objects are
persisting in memory past garbage collections and when and where these objects
were created.

The garbage collection system can also cause performance issues if the application
generates many short-lived objects.

White Paper

7

J2EE development is still relatively new and most companies lack sufficient
experience to anticipate difficulties and avoid performance pitfalls. Tools and
process can help guide these companies to higher levels of performance and
productivity.

Configuration of J2EE Application Servers and JVMs is complicated and can have a
profound affect on application performance. Performance tooling in staging and
system testing needs to provide visibility into performance bottlenecks at a system,
component and transaction level.

Additional performance, threading and scalability issues can result when load is
applied. Companies need to ensure that proper scalability testing is done in their
staging environment to correctly identify performance issues, as they would occur
in the production environment.

Existing Systems Management products lack the ability to monitor J2EE systems
and collect the necessary information needed by developers to correctly diagnose
and resolve performance problems detected in production.

Most applications servers provide a JMX interface to allow users to monitor the
application server, but users will need monitoring solutions that extend this
information and provide key performance information at a transaction level.

Early tuning can help identify the methods that are creating these objects, and the
developer can then modify the design to reduce their number. Early tuning also
means that lessons of efficiency can be abstracted from one method to similar
ones, thereby helping developers avoid repeating inefficiencies. In the latter case,
that of memory leaks, the garbage collector is unable to reclaim memory as a result
of an erroneous reference. Early tuning makes it easier to identify loitering objects
and resolve the unintentional reference that retains them through garbage collector
cycles, if for no other reason than that the design and implementation is fresh in
the developer’s mind.

Java, with its inherent tendency to distance developers from much of the code they
employ within an application, generates unique challenges that underscore the
need to make performance tuning and analysis essential elements of the
development stage. Also, the need for new testing and monitoring solutions is
required to ensure maximum uptime and shortened resolution time for problems
detected in production.

Improved J2EE Performance and User Experience with Pre-production Testing

8

Walking the Talk: The Iterative Model in
Practice

We noted earlier that, while most managers and developers agree that tuning and
analysis should take place during development, few are actually doing it. When
thousands of users are simultaneously accessing an application launched from a
single server, a small glitch that would be barely noticeable by a user working in a
client-side environment becomes a major performance problem experienced by the
entire community.

Likewise, the cost of fixing problems at a later stage has become very high,
particularly as applications become more complex. As Juergen Brendel, CTO of
Esphion, describes, “A major design flaw that can be fixed with just a stroke of a
pen during the design stage may require major recoding if discovered when the
software is almost finished.” Deferring tuning and analysis until the testing phase
(prior to deployment) simply poses too great a hazard as problems that surface at
this stage tend to be far more severe, costly and time-consuming to repair.

The cost-effectiveness argument—the value of transforming performance tuning
from a responsive exercise to a preventative one—is powerful. Early tuning can help
teams avoid last-minute disasters that can threaten deployment dates, alienate
customers and undermine carefully planned budgets.

When this element is added to the time constraints of software production,
constantly shifting customer functionality requirements and decreasing market
tolerance for poor performance, a strong case emerges for the use of a highly
flexible, iterative and fully integrated performance-tuning process. Development
teams can no longer afford to ignore the demands exerted by a changing
marketplace and the rising prevalence of object-oriented code in Internet
applications. Organizations have to be sure to treat software as a strategic asset
that must be nurtured and protected throughout its life cycle.

Companies need a model that addresses the “organic” quality of the development
process, one that acknowledges that the determination of requirements is a process of
incremental discovery. Such a development model would proceed concentrically:
requirements would be established, designs would be formulated, code would be
written, problems would be detected, new requirements would emerge, new designs
would be formulated and new code would be written—iterating towards a point at
which the application fulfills the needs and expectations of the client. However, this
does not remove the requirement for a J2EE-centric set of testing tools and monitoring
tools in QA and production.

The key to achieving optimal performance is to tune during each cycle of
development. This would help ensure that individual class definitions are solid and
can be safely relied upon when they are imported into new applications.

White Paper

9

When to Begin Tuning

Within this approach, timing is essential. Tuning and analysis should be integrated
throughout the development stage and organized around complete use cases,
enabling developers to avoid potentially wasteful efforts while ensuring that errors
do not accumulate.

We are not, however, advocating an “early as possible” position—tuning too early
may consume valuable developer time on code that will change or is incomplete. It
is important to find a compromise between the need to avoid devoting time to
tuning use cases that are ultimately discarded and the need to tune early and
often. This compromise can be achieved by tying thread analysis, memory
debugging and performance profiling to the implementation of each use case.
Changes to requirements or fixes can readily be inserted at each iterative stage.
Partial product releases are made possible, and sound code based on repetitive
identification and resolution of problems is generated, thereby providing a firm
foundation on which to build subsequent code. In the interest of time, the
identification of the key use cases and their performance requirements is a very
important step that must be completed before any performance tuning.

Companies should look for industry-leading tools that allow integration with their
build and unit testing system to allow for automation of collection of performance
and memory information as part of the nightly build and test process. In addition,
QA tools need to be integrated with load testing solutions and production
monitoring and performance support tools need to be able to collect deeper
performance information when key thresholds affecting end user experience are
exceeded.

Who Should be Responsible

Responsibility for performance must be shared among many team members in the
development process. Business analysts must ensure that they accurately relay
information about performance expectations and load expectations for the new
business solution. Architects must then look at these requirements, look at the
company’s systems and expertise and design a solution that will ensure success
today and in the future. The developers themselves need to take on a greater share
of the responsibility for performance of the application at a code level.

Not only does this represent a shift in the timing of the tuning process, it also shifts
responsibility for it. Developers should be armed with tools that enable them to
make tuning and analysis new elements of the code writing process.

Improved J2EE Performance and User Experience with Pre-production Testing

10

According to the iterative approach, performance tuning and analysis are assigned
to the people who best understand the application design, objectives and the code
itself. With their first-hand knowledge, developers are optimally equipped to make
the best decisions about enhancements. Moreover, by making performance their
responsibility from the start, developers are given the opportunity to learn about
designing specifically for performance, a valuable skill that can benefit subsequent
projects. The result is that developers can ensure a baseline of quality before an
application goes into QA testing.

This does not remove the responsibility from the QA team to execute performance
and scalability testing, but ensures that the code they are testing will be more
robust due to the additional testing completed during development.

Advantages

Should this approach be used for every project? When determining how early in the
life cycle performance tuning and analysis should occur, and who should be
responsible, it is important to consider the project’s scope and specific
requirements. In rare cases, when one is certain in advance that there will be no
changes or if the application is particularly simple, a more traditional approach may
be preferable. But it must be remembered that, even with a simple project, costs
can rise quickly if one has to fix missed errors at a late stage in the life cycle,
particularly if those errors become apparent post-deployment.

The greatest advantage to the iterative approach is that, with recurring tuning,
performance reliability is built into each use case. In essence, each intermediate
milestone release represents an actual product, so that subsequent stages can be
viewed as extensions of earlier products. One corollary to this is that it allows a
team to release a product to a client much earlier, something we noted to be
increasingly desirable. Customers of e-commerce applications, for example,
typically want new versions quickly so that they can address needs rapidly. By
tuning earlier, and by developing in these smaller chunks, it is easier to achieve
timely deployments.

Other advantages include:

• Removing a serialization bottleneck in the development process

• Forcing a degree of clarity from the perspective of designers and
architects, essential for overall developmental efficiencies

• Helping developers better understand their own code and the code they are
importing

• Focusing attention on early error elimination

• Allowing for actions to counteract risk to be taken at any time

• Focusing attention on reuse options

• Foregrounding a concern with quality and performance

White Paper

11

JProbe Suite

While the advantages of using Java are well known, the unique challenges that we
have documented mean that potential savings can vanish quickly if developers are
not effectively empowered with the right tools to produce the most reliable, efficient
code possible.

JProbe Suite is a complete performance toolkit for Java code tuning. JProbe Suite
helps developers diagnose and resolve performance bottlenecks, memory leaks,
excessive garbage collection, threading issues and coverage deficiencies in their
J2EE and J2SE applications. JProbe Suite is ideal for making early and regular
tuning and analysis a best practice.

The tools in JProbe Suite integrate easily with your environment (Application or
Web Server, IDE, JDK and operating system). Whether you need to analyze an
application running on your desktop or on a remote server, JProbe Suite requires no
changes to your application code in order to provide you with the best information
you need to diagnose and resolve your java code related performance issues. In
fact you can automate the collection of your performance information using JProbe
Suite’s advanced data collection features and save your valuable time.

Improved J2EE Performance and User Experience with Pre-production Testing

12

JProbe Profiler

JProbe Profiler helps developers identify and eliminate performance bottlenecks in
Java code. It has a visual Call Graph interface as well as unique data collection
technology. These features allow JProbe Profiler to provide highly accurate
performance diagnostics, with line-by-line precision, at lightning speed. Developers
can see exactly where time is being spent as the program runs, and then easily
tune their code to dramatically increase the program’s speed.

White Paper

13

JProbe Memory Debugger

JProbe Memory Debugger pinpoints the sources of inefficient memory usage by
tracking objects that hold references to other objects. Inefficient memory usage
results from oversights in reference management that causes failure to reclaim
discarded memory. An object that is not being used but persists wastes valuable
memory. If memory completely runs out, the ultimate result can be a fatal
OutofMemoryError. JProbe Memory Debugger’s intuitive Memory Usage window
allows developers to visualize memory usage, including memory allocation and
garbage collection—and to do it in real time. The Garbage Monitor helps developers
to improve performance by identifying those methods that generate excessive
amounts of short-lived objects.

Quest PerformaSure

While JProbe Suite can give developers great visibility into how the JVM is executing
their code, clients developing J2EE applications need visibility into the performance
characteristics of their key transactions across the entire J2EE stack. PerformaSure
provides users with the ability to correlate system metrics with application server
metrics and with transaction-specific performance metrics.

Offering an end-to-end transaction-centric view of performance, PerformaSure is a
user-friendly, low-overhead performance diagnosis tool for distributed J2EE
applications running in a production or test environment.

Improved J2EE Performance and User Experience with Pre-production Testing

14

PerformaSure’s exclusive Tag-and-Follow™ technology traces and reconstructs the
execution path of end-user transactions across all the components of a clustered
multi-tier J2EE system, allowing application administrators, DBAs, developers and
QA to work together to diagnose and resolve performance bottlenecks quickly and
easily.

PerformaSure is typically used in conjunction with load testing tools to understand
the performance of a user’s J2EE solution under realistic conditions. However, every
company has performance issues that cannot be simulated in their testing and
staging environments. For these issues, users can run PerformaSure, possibly with
Quest’s other production support tools, in their production environment to capture
the information they need to quickly diagnose and resolve application issues.

PerformaSure allows users to easily visualize in which tier the performance
bottleneck resides and even recreate the end user transaction path through the
application.

White Paper

15

THE METHODOLOGY

Using JProbe Suite to bring best practices to performance tuning and analysis
means using it early and regularly. Once a use case of the application has been
implemented, the developer should first tune to ensure optimal memory usage. A
heap analysis performed using JProbe Suite Memory Debugger will ensure that
loitering objects don’t stay in the environment longer than they should. Finally, the
developer should performance tune with JProbe Profiler. It is at this point, when
developers have completed all tuning and have implemented all changes for a
particular use case, that that unit of code is passed to QA.

The most efficient methodology for attaining Java code that is reliable, high
performing, efficient and free from error is to first ensure code correctness, then
efficient memory usage, and finally performance enhancement. These steps bring
best practices to performance tuning and analysis by making them early and
iterative processes performed by those who know the code the best: the developers
themselves.

PerformaSure is best used during QA/testing, most likely in a staging environment,
to allow performance tuning of the entire application (looking at code, application
settings and database performance related issues). Users also need to review their
production environment to ensure that they have the right tools to monitor and
collect performance information on their J2EE application, because performance
issues do still occur in production even despite best efforts to identify and remove
them during the development and testing phase.

Improved J2EE Performance and User Experience with Pre-production Testing

16

CONCLUSION

An investigation into an Airbus A320 crash that killed 87 people revealed that a
computer design flaw was partly to blame. An $80 million satellite was lost in 1993
after a software error caused its thruster rockets to consume its entire fuel supply.

Not all instances of performance flaws generated by faulty code result in such
extreme scenarios, but they all have consequences. As the market demands
increasingly complex applications, and as the reliance by enterprises on Internet-
based applications for mission critical activities rises, facing those consequences
has to be an overriding concern for all development teams. And, the need to treat
software as a strategic asset has to be a priority for organizations.

The most important step that companies can take is to shift their view of
performance tuning from a responsive process to a proactive, anticipatory,
preventative process. Ensuring that errors don’t accumulate or get buried is key for
keeping development costs down and ensuring users remain connected and
satisfied.

Companies must embrace an iterative approach to performance tuning and analysis
in which these practices are performed early and regularly throughout the
development stage of the application life cycle. They must also ensure that
solutions used during QA and production can collect the information required to
help development teams quickly isolate the root cause of issues, ensuring greater
uptime By placing the right tool in the hands of the right people at the right time,
companies will improve their Java application performance and availability.
Following this model not only ensures higher Java and J2EE application performance
and reliability; it also permits a more rapid product release to clients.

White Paper

17

ADDITIONAL RESOURCES

For additional information on JProbe Suite, please visit: http://www.quest.com/jprobe

For additional information on PerformaSure, please visit:
http://www.quest.com/performasure

TRAINING

Quest Software’s Java performance experts are available to help. For more
information visit http://www.quest.com/services or e-mail training@quest.com.

http://www.quest.com/jprobe
http://www.quest.com/performasure
http://www.quest.com/services
mailto:training@quest.com

Improved J2EE Performance and User Experience with Pre-production Testing

18

ABOUT QUEST SOFTWARE, INC.

Quest Software, Inc. delivers innovative products that help organizations get more
performance and productivity from their applications, databases and Windows
infrastructure. Through a deep expertise in IT operations and a continued focus on
what works best, Quest helps more than 18,000 customers worldwide meet higher
expectations for enterprise IT. Quest Software can be found in offices around the
globe and at www.quest.com.

Contacting Quest Software

Phone: 949.754.8000 (United States and Canada)

Email: info@quest.com

Mail: Quest Software, Inc.
 World Headquarters
 5 Polaris Way
 Aliso Viejo, CA 92656
 USA

Web site www.quest.com

Please refer to our Web site for regional and international office information.

Contacting Quest Support

Quest Support is available to customers who have a trial version of a Quest product
or who have purchased a commercial version and have a valid maintenance
contract. Quest Support provides around the clock coverage with SupportLink, our
web self-service. Visit SupportLink at http://support.quest.com

From SupportLink, you can do the following:

• Quickly find thousands of solutions (Knowledgebase articles/documents).

• Download patches and upgrades.

• Seek help from a Support engineer.

• Log and update your case, and check its status.

View the Global Support Guide for a detailed explanation of support programs,
online services, contact information, and policy and procedures. The guide is
available at: http://support.quest.com/pdfs/Global Support Guide.pdf

http://www.quest.com/
mailto:info@quest.com
http://www.quest.com/
http://support.quest.com/
http://support.quest.com/pdfs/Global Support Guide.pdf

	Improved J2EE Performance and User Experience with Pre-production Testing
	Abstract
	Contents
	Overview
	Introduction
	The Evolution of Performance Tuning and Analysis
	Changing Market Dynamics
	Unique Challenges of Java Development and Performance Manage
	Walking the Talk: The Iterative Model in Practice
	When to Begin Tuning
	Who Should be Responsible
	Advantages
	JProbe Suite
	JProbe Profiler
	JProbe Memory Debugger
	Quest PerformaSure

	The Methodology
	Conclusion
	Additional Resources
	Training
	About Quest Software, Inc.
	Contacting Quest Software
	Contacting Quest Support

