
LEXICALLY -GENERATED SUBJECT HIERARCHIES
FOR BROWSING LARGE COLLECTIONS

Craig G. Nevill-Manning*, Ian H. Witten† and Gordon W. Paynter†

* Biochemistry Department,
Stanford University,

Stanford, CA 94305–5307
cnevill@stanford.edu

† Department of Computer Science,
University of Waikato,

Hamilton, New Zealand.
{ihw, gwp}@cs.waikato.ac.nz

Developing intuition for the content of a digital collection is difficult. Hierarchies of subject
terms allow users to explore the space of topics that a collection covers, to form and specialize
useful query terms, and to directly identify interesting documents. We describe two interfaces
for navigating such hierarchies, and present a technique for inferring hierarchies automatically
from large corpora. We also discuss scalability issues for the techniques involved, and our
solutions to these problems.

1 Introduction
How can you browse a digital library? Its appearance gives little clue as to what lies inside. At least
physical collections occupy physical space, present a physical appearance, and exhibit tangible
physical organization. When standing on the threshold of a large library one gains a sense of
presence and permanence that reflects the care taken in building and maintaining the collection
inside. No-one could confuse it with a dung-heap! Yet in the digital world the difference is not so
palpable. What lies beyond that front page—a carefully-selected collection or a morass of
worthless ephemera?—half a dozen documents or many millions? Have you no choice but to
believe the home-page blurb—to judge thousands of books by a single cover? How can you
experience a digital library, as you would stroll through the stacks of a physical one?

The opacity of digital collections is enormously frustrating. Precisely because the collection is
available digitally it should be amenable to automatic indexing, summarization, and visualization
techniques, which ought to make browsing particularly easy and meaningful. Studies of browsing
have shown that it is a rich and fundamental human information behavior, a multifaceted and
multidimensional activity (Chang and Rice, 1993). Research is progressing on an arsenal of
techniques that head in quite different directions: physical-space metaphors like virtual-reality
libraries (Hearst & Karadi, 1997), navigation metaphors like hypertext, information-space ones
like topic clustering and visualization (Cutting, et al., 1992), people-oriented approaches based on
formally-defined roles like network librarians or informal ones like intellectual encounter groups,
market-oriented schemes like negotiation between agents, ethological ones like foraging, and
agricultural ones like harvesting and berry-picking.

Despite the interest and activity in these exciting new possibilities, it is direct, explicit, searching
that dominates the digital library scene today—for browsing as for everything else. Full-text
retrieval makes it possible, in principle, to locate relevant information very efficiently in a huge
collection. Retrieval of matching documents involves both precision (not returning irrelevant
documents) and recall (not overlooking relevant documents) (Salton, 1989), and there has been
much research on how to maximize precision and recall given a particular query (Harman, 1992–
96). In practice, the question posed at the beginning of this article tends to be answered by making
a selection of queries more or less haphazardly to gain a feeling for what the collection holds.

This paper describes a new way of getting to grips with the content of a collection. The idea is to
build a hierarchical subject index automatically from the text of the collection itself. This index is a

hierarchical structure of phrases that appear frequently. Presented interactively to the user, it
provides a new foundation for browsing. Figure 1 shows an example of the interface, which will
be discussed more fully in due course. Briefly, users can select any word from the lexicon of the
collection (the word index has been selected in the left-hand column), see which phrases it appears
in (center column), select one of them (indexing and retrieval) and see the larger phrases in which
it appears (right-hand column). Only part of the window is shown in the figure, and columns
continue to the right. This is reminiscent of the permuted title or keyword-in-context (KWIC)
indexes of days gone by. However, there are two crucial differences. First, a hierarchical
structure of phrases is identified. This greatly reduces the size of the index and allows the user to
home in on useful information in logarithmic time. Second, the phrases are restricted to those that
occur more than a preset number of times—usually twice or more. This shifts attention from
individual items towards the content of the collection as a whole.

Phrase browsing allows users to gain a feeling for the kind of topics that are treated in the
collection. As a bottom-up, lexical approach, it lies at the opposite end of the spectrum to holistic,
semantic, methods like document clustering. Both kinds of technique are important, and future
solutions will incorporate a variety of different approaches, offering different things to people with
different cognitive styles or different kinds of requirements.

This paper describes the technique: how the index can be browsed, what it feels like to use, and
also how the index is created. We have developed an algorithm (called SEQUITUR) that infers a
hierarchical structure of phrases from a sequence of discrete symbols. It is very efficient and can
easily process large amounts of text (our main example in this paper is based on a corpus of 62
million words). The details of the algorithm are not central to this paper and so are deferred to an
appendix. More important, for present purposes, are the kind of phrases that are identified, and
how they can be displayed in a browsable form. This paper gives many examples of the phrases
generated to convey a feel for this new way of browsing, and describes interfaces for both local X-
windows access and remote access over the World-Wide Web. Finally, we discuss the distinctive
features as well as some shortcomings of this approach to browsing the content of document
collections, and review opportunities for future work.

Figure 1 Part of a typical browsing screen for the Computists’ Communique collection

2 Identifying index terms
The SEQUITUR algorithm infers a hierarchical structure of phrases from a sequence of discrete
symbols. The technical details of the algorithm are described in the Appendix: here we indicate,
through examples, what it can do.

SEQUITUR can operate on any sequence of tokens and infers structure from repeated substrings.
When individual letters are used as tokens, it successfully identifies most words, including, in
some cases, their morphological structure, and some short phrases. Figure 2 shows parts of three
hierarchies inferred from the text of the Bible in English, French, and German. The hierarchies are
formed without any knowledge of the preferred structure of words and phrases, but nevertheless
capture many meaningful regularities. In Figure 2a, the word beginning is split into begin and
ning—a root word and a suffix. Many words and word groups appear as distinct parts in the
hierarchy (spaces have been made explicit by replacing them with bullets). The same algorithm
produces the French version in Figure 2b, where commencement is split in an analogous way to
beginning—into the root commence and the suffix ment. Again, words such as Au, Dieu and
cieux are distinct units in the hierarchy. The German version in Figure 2c correctly identifies all
words, as well as the phrase die Himmel und die. In fact, the hierarchy for the heaven and the in
Figure 2a bears some resemblance to the German equivalent.

For the subject hierarchies that are the topic of this paper, words rather than individual letters are
used as tokens. Figure 3 shows a small example of such a hierarchy. The graphical version in
Figure 3a mirrors the structure of Figure 2, whereas Figure 3b shows its native representation as a
grammar. Each branch in the hierarchy corresponds to a rule in the grammar. The rules that
SEQUITUR creates will be illustrated by a grammar constructed from a large body of 7000 computer
science technical reports, part of the 1.9 Gb corpus comprising the Computer Science Technical
Report collection of the New Zealand Digital Library (Witten et al., 1996). Pertinent details of the

a

I n ¥ t h e ¥ b e g i n n i n g ¥ G o d ¥ c r e a t e d ¥ t h e ¥ h e a v e n ¥ a n d ¥ t h e ¥ e a r t h

b

¥ A u ¥ c o m m e n c e m e n t , ¥ D i e u ¥ c r � a ¥ l e s ¥ c i e u x ¥ e t ¥ l a ¥ t e r r e

c

¥ I m ¥ A n f a n g ¥ s c h u f ¥ G o t t ¥ d i e ¥ H i m m e l ¥ u n d ¥ d i e ¥ E r d e

Figure 2 Hierarchies for Genesis 1:1 in (a) English, (b) French, and (c) German

a

probabilistic context free grammars (pcfgs)

b S → ...A...
A → B (pcfgs)
B → probabilistic C
C → D grammars
D → context free

Figure 3 A small word-based hierarchy displayed (a) as a tree and (b) as a grammar

collection are summarized in Table 1. The reports were presented as a sequence of words, and all
words were mapped, somewhat arbitrarily, to lower case before processing. This produced a
vocabulary of 270,000 words, nearly half of which are hapax legomena, that is, words that only
occur once in the corpus.

In any hierarchy produced by SEQUITUR, the rule headed by the start symbol S expands to
reproduce the entire sequence (of 62 million words, in this case). In Figure 3b, for example, the
ellipses before and after the non-terminal A in rule S indicate the rest of the document surrounding
the phrase, which we have not bothered to write out (the ellipses expand to 62 million words less
five). This initial rule has rather a different character to the others. All other rules express
regularities in the original sequence, in that their contents must occur at least twice. The top-level
rule receives the leftovers; the unique sequences that do not recur. In the grammar produced for the
sample of Table 1, the initial rule contained 16 million symbols—about a quarter of the number of
words in the original sequence. There were 2.6 million other rules, that is, phrases; having an
average of only 3.3 symbols on their right-hand side. Because the grammar is hierarchical, some
of these symbols are non-terminals that refer to other grammar rules. On average, a grammar rule
expands to 9.6 words if all the non-terminals in it are expanded recursively.

Figure 4a shows the first few rules that involve the word grammar, which occurs a total of 5109
times in the text. The rules appear in decreasing order of occurrence frequency, and the number of
times each occurs is given on the left. Thus the most frequent phrase is the grammar (which
occurs 426 times in the text), followed by attribute grammar and a grammar. The first and third
phrases are of little interest. However the second, attribute grammar, is just the kind of entry that
one would like to see in a subject index.

Words that occur very frequently obscure information. Tokens like a and the degrade the index
because SEQUITUR often uses them to form rules, but they add little meaning to the phrase. It is of
little interest that the most common phrase involving the word grammar is the grammar.
Consequently, in Figure 4b we have suppressed rules that differ from their parent rule (or parent
word) merely by the addition of a common word.1 In practice, somewhat over half of the rules
formed by SEQUITUR are spurious ones that do not add anything meaningful because they differ
from their parent rule only by the inclusion of words that appear in the hundred most common
words.

As Figure 4b shows, suppressing uninteresting rules generates a much more worthwhile set of
phrases. In fact, half of the twelve phrases visible here are definitely index terms for this
collection—attribute grammar, context free grammar, montague grammar, bison grammar,

1 In fact, these rules are not actually suppressed, but expanded one further level. This is explained in

more detail later.

Sample 7000 reports from 37 FTP sites

380 Mb, 62 million words

Vocabulary 270,000 words

121,000 hapax legomena

Grammar 2.5 million rules (phrases)

3.3 symbols/rule on average

(9.6 words when fully expanded)

Time to infer grammar 20 minutes

Table 1 Sample grammar formed from computer science technical reports

categorical grammar, and reber grammar. Of the others, grammar rules, grammar rule, grammar
inference, and perhaps interpretation grammar are arguably index terms as well. The first entry
in Figure 4b corresponds to the grammar rule

A → attribute grammar

It is unfortunate that the same term appears again a little further down the list, in the phrase an
attribute grammar. This is because a rule

B → an attribute

was created prior to rule A above, and this caused a new rule

C → B grammar

to be formed instead of

D → an A

a

b

c

d

Figure 4 Some rules containing the word grammar:
(a) Rules without stopword suppression, (b) Rules with stopword
suppression, (c) Expansion of the second line in (b) and
(d) Expansion of the first line in (c)

—which would expand to the same thing. This last would have been vastly preferable because it
would have increased the strength of rule A. However, SEQUITUR is a greedy algorithm: once a rule
is formed, it is never reconsidered. A more sophisticated approach would have such serious
consequences in terms of computational complexity that it would be completely impossible to form
grammars of anything like this size. In fact, the problem of finding a set of phrases that produces
the smallest phrase-structure representation is known to be NP-complete (Storer and Szymanski,
1982).

Figure 4c shows expansions of the second phrase of Figure 4b, context free grammar. This
section of the hierarchy corresponds to rules

E → context free grammar

F → probabilistic E

G → reduced E

H → E cfg

I → E recognition
etc.

The phrases probabilistic context free grammar, reduced context free grammar, and context
free grammar recognition are valuable index terms; the remaining phrases in Figure 4c are not.
The phrase context free grammar cfg serves to introduce an abbreviation. The occurrence of a
probabilistic context free grammar indicates that the phrase a probabilistic was created before
context free grammar, another manifestation of the suboptimality of the rule formation procedure.
Below this point the phrases that are encountered have only been seen two or three times, so it is
not surprising that they do not appear to be useful index terms. However, they are left in the
display, because they fulfill another role: they provide access to actual documents in the collection.

There are just nine expansions of probabilistic context free grammar, and the seven lines of
Figure 4d cover all of them. Now a new phenomenon appears: except for the first two, these
phrases do not participate in grammar rules but appear as components of rule S, the top-level rule.
Recall that this initial rule contains 16 million symbols. Buried somewhere in there is something
like

… grammars and show that a F using … definitions and properties a F is just an …
work best with current day F pcfg parsers … the highest probability of any F for that
… of the text given the F unfortunately …

However, it is likely that many of the terminal symbols shown here are also represented by higher-
level rules, and so rule S might contain something more like

S → … P and Q F using … R a F is T … U with V F W … the X of any F Y … of Z the
F unfortunately …

with appropriate expansions for the non-terminals P, Q, R, T, U, V, W, X, Y and Z. Excerpts from
the actual technical report text are indicated as such in Figure 4d by the ellipses.

Even at this low level of the hierarchy there are valuable discoveries to be made. The expansion of
the second rule of Figure 4d, probabilistic context free grammar pcfg, leads to an interesting
inference: pcfg is being used as a synonym for probabilistic context-free grammars. The
implication that this acronym is used in place of the phrase is potentially extremely useful: the user
may decide to perform another search on the abbreviation, because it is likely that once it has been
defined, the acronym alone will be used (in fact it occurs alone 87 times in this collection). It is
interesting to consider how this information would have been obscured in a different method of

presentation—it is hard to imagine such a discovery taking place in the absence of a phrase-
browsing technique, because the co-occurrence of a phrase and an abbreviation usually has no
special significance. This phenomenon is not uncommon: in fact it also occurs in the third rule of
Figure 4c, context free grammar cfg.

3 Interactive browsing
We have built two browsers for this phrase hierarchy, one written in TCL/TK for X-windows, and
the other written as a Java applet for Web browsing. Figure 1 illustrates the former; Figure 5 the
latter. The screen display in Figure 1 shows a hierarchy based (for variety’s sake) on a different
corpus, the Computists’ Communique (www.computists.com). This is an on-line AI research
news magazine, operating since 1991, which includes grant and funding opportunities, industry
news, Internet and Web information, on-line resources, research discussion lists, software offers,
software development resources, and career and entrepreneurial tips. The examples in Figures 4–8
are taken from the corpus described in Table 1.

The X-windows browser
The X-windows implementation displays the full vocabulary of the collection (at the left of Figure
1). This means that a browsing session can take place entirely with a mouse. Every path through
the hierarchy leads to a phrase that is guaranteed to occur in the collection. In practice, however,
the vocabulary is far too large to permit convenient access purely by scrolling. Keystrokes serve to
scroll the list to the appropriate place, so that a prefix can be entered on the keyboard to evoke the
appropriate range of words on the screen.

In Figure 1 the user has selected index from the vocabulary and the phrases it appears in are listed
in the next column to the right. For example, index htm appears six times. Note that this particular
phrase appears as an artifact of word parsing: it emanates from the filename index.htm—as of
course does index html, further down the list. It is encouraging that these junk entries consume far
less space in the list than they would in a conventional query for the term index. Each phrase can
be selected and expanded in turn. The user has selected the phrase indexing and retrieval, which
also appears six times in the corpus. In this particular case, each of these six phrases occurs exactly
once and cannot be expanded any further—in fact they are all flanked by ellipses that would be
revealed by scrolling the third column horizontally.

In general, the user can traverse the grammar, extending and hence specializing the query term.
Every word is the root of a tree structure whose leaves are the occurrences of that word in the
collection. Occurrences in other rules are internal nodes corresponding to phrases that contain the
word. Those phrases are themselves used elsewhere in the grammar, either in the top-level rule or
in other rules for longer phrases. It is possible to stop at any internal node and use that phrase as a
query term, or continue following the tree to a leaf and retrieve the corresponding document.

SEQUITUR treats different words as completely different symbols even though they may be closely
related lexically. The interface overcomes this problem by stemming queries and expanding them to
include related words from the lexicon. For example, in Figure 1 the user has selected index, but
the interface displays phrases including indexed, indexers, indexes, and indexing as well. This
process is explained in more detail in Section 4

Another feature concerns hapax legomena. Generally, between 30% and 50% of the words in the
vocabulary of any collection appear only once (in Table 1, the proportion is 45%). These words
can never generate a phrase hierarchy, and are unlikely to be of interest to the user of a browsing
tool whose purpose is to give a feel for the general content of a corpus—even though they would
be highly significant if used in any particular query. Any words that appear less than a small,
preset number of times are not included in the vocabulary list and are printed in red whenever they

appear in the other columns. The user can change the threshold so that there are no rare words, or
so that words that occur fewer than a certain number of times are considered rare; this is done
interactively using the Rare Words menu item. In Figure 1, the only rare word visible is
syntactica, which appears on the fourth line of the indexing and retrieval column: in fact it
appears in red although this is not apparent in the Figure. Incidentally this word is a brand name in
Syntactica indexing and retrieval systems; a possibly interesting feature of the collection that we
would surely never have noticed without such a browsing tool.

As noted earlier, common words are used to weed out profitless phrases like indexing and by only
displaying phrases that differ from their parents by at least one non-common word. When the user
performs a search for index the phrase indexing and is not returned because and is not an
interesting word. Conversely, the phrase knowledge index is displayed because knowledge is an
interesting word. Phrases that are not interesting are expanded until they subsume at least one
further interesting word. For example, when indexing and is expanded it generates several
interesting phrases, including indexing and retrieval and automatic indexing and fact extraction
from. Common words are identified as those that occur more than a certain number of times—by
default, one hundred times. In this interface, common words are shown in gray, and the threshold
can be changed interactively using the Common Words menu item.

The Web browser
The Web interface shown in Figure 5 provides slightly different interactive facilities from the X-
windows version. The word list to the left of Figure 1 would either need a huge vocabulary to be
transmitted in advance, or extremely rapid Web access to provide the same effect using incremental
transmission: thus we have (reluctantly) dispensed with this very useful facility. However, a way

Figure 5 A typical browsing screen for the Web interface

of cutting off low-frequency phrases has been included. Figure 5 is set to show all phrases, but
the user could have opted instead to hide terminal phrases, or, in addition, non-terminal phrases
with frequencies less than a selectable cutoff value. Moreover, the stemming feature has been
improved: the way in which it has been improved is described in the next section because its
operation is intimately bound up with the system structure.

This section gives several illustrations to convey the feeling of how the system can be used to
browse a huge collection of information. Figure 5 shows phrases containing the word robot which
was entered textually in the search box. Just over half of the top twelve terms are quite clearly
subject terms: here they include mobile robot, robot motion, robot arm, robot navigation, robot
control, robot hands, and robot vision. The phrase a mobile robot appears because of the above-
mentioned problem of suboptimal rule formation. The page contains panels for further
expansion—three panels in all, one of which is barely visible in the Figure. In the second one, the
term mobile robot has been expanded. The panels can be arranged vertically, as shown in the
illustrations here, or horizontally in the fashion of Figure 1.

Figure 6 shows the results for language. Nine of the twelve items visible are definitely index
terms, two of the remainder (language constructs and language design) are arguably so.
Expanding programming language leads to the second panel: here again nine entries are definite
index terms, two are caused by suboptimal rule formation (reference manual for the ada
programming language and a database programming language), and the remaining one stems
from bibliography entries (conference on programming language). Further expansion of
programming language design leads to the phrase programming language design and
implementation, along with a number of conference titles and several excerpts from actual
technical reports (which would have been suppressed if the user had selected the hide terminal

Figure 6 Phrases containing the terms language,
programming language, and programming language design

phrases option).

If the user selects a terminal phrase, the document in which the phrase occurs is displayed in a
separate browser window. As it is possible—even likely—that two or more similar phrases are
drawn from the same document, we are investigating ways to show when this occurs to prevent
the user from selecting several interesting excerpts from the same document. Another way to avoid
this problem is to use a search engine with a higher-level phrase. If the corpus has been separately
indexed by a compatible full text retrieval search engine, the user can initiate a traditional search for
any phrase by clicking on it with the right mouse button. A separate browser window will display
the results of the search.

Figure 7 shows the results for the word digital, and the expansion of the terms digital library and
visible human digital library. The lack of stemming on the phrases (as opposed to the query)
causes problems: digital library is separated from digital libraries; digital computer and digital
computers are listed separately. Major digital library projects are identified (Alexandria, visible
human, Illinois) along with generic kinds of digital library (national, image, medical image)—
although again suboptimal phrase identification causes some redundancy.

Although it is not evident from the scroll bars in Figures 4–7, only a very small fraction of the
index entries are shown, and one cannot help wondering what happens if you go further down the
lists. Figure 8 shows, in the top two panels, the direct continuation of Figure 4b: entries (with
stop-words in force) for the word grammar. Many viable index terms appear even at these lower
levels: functional grammar, prefix grammar, english grammar, dependency grammar, regular
grammar, generalized phrase structure grammar, segmental grammar, control grammar. At this
point the phrases that are found appear only a dozen times; and the scroll bar bears witness to the
fact that there is a lot further to go! In the bottom panel of Figure 8, about halfway down the list,
the terms are less consistently useful. There are still interesting terms such as fuzzy grammar and

Figure 7 Phrases containing the terms digital, digital
library, and visible human digital library

random grammar, but there are also lengthy phrases, such as replay in an attribute grammar
framework with annotation is a, that occur only twice. For this reason, a menu selection is
provided to limit the phrases returned to those occurring more than a specific number of times.

Bear in mind that the collection from which this index was formed contains 62 million words,
7000 technical reports. An enormous variety of topics is covered, and it is not surprising that as
well as genuine subject terms there are a huge number of less interesting phrases that appear only
two or three times each.

4 System structure
The World-Wide Web subject hierarchy browsing system is implemented as a client-server
structure, and the implementation poses significant technical challenges because the amounts of
information involved are extremely large. Hierarchies generated by SEQUITUR are roughly
proportional to the size of the original text—380 Mb for our main example—and it is clearly
infeasible to retain the entire hierarchy in main memory for such large corpora. This creates
problems for two parts of the system: the formation of the hierarchy, and its traversal at run-time in
order to create the dynamic display. The solution to the first problem involves a modification to the
SEQUITUR algorithm, which, while simple, is not germane to the present paper. The second
problem is intimately connected to the process of browsing, and our solution is described here.

Figure 8 Further down the list of entries for grammar that
starts in Figure 4b.

Figure 9 depicts the structure of the distributed, disk-based browsing system. The top three
processes are performed once for the collection, and produce all of the files necessary for the
browsing system. The input is the text of the collection. The first process, the tokenizer, parses
this text into words and forms a lexicon for it. It also produces a file containing the frequencies of
each of the lexicon entries, and URLs for each of the documents in the collection. The tokenizer
simultaneously produces a stream of numbers—indexes into the lexicon—that represent the text
thereafter. These numbers are treated as atomic symbols by SEQUITUR, which forms a hierarchy
from the sequences of numbers, as described in the Appendix, and outputs it as a textual grammar.

This grammar is unsuitable for browsing in its textual form for two reasons. First, during
browsing it is necessary to find all occurrences of a particular symbol—whether a word or a
reference to a rule—in the grammar. Without an index, this requires the entire file to be scanned.
Second, finding a particular rule in order to compute its expansion requires a similar scan. In order
to make these operations acceptably fast, a representation of the grammar is created on disk where
a symbol is represented by a four byte integer. This allows three auxiliary indexes to be built that
record offsets in the grammar file. The first, the rules index, specifies the file offset on disk where
each rule begins. The second, the symbol index, lists all offsets for each unique symbol in the
grammar. Because symbols occur a variable number of times, a second-level index records the
start of the list of occurrences for each symbol in the symbol index. The third index records the
offsets of the start of each document in rule S. In addition to the indexes, there are two files that
record the frequencies of words and usage of rules. These are used for calculating stop-words, and
for ranking rules by usage. All of these files are indicated by the store labeled “disk-based grammar
with inverted index” in Figure 9.

Once the files are produced, a server is started that awaits queries on a socket. The smaller indexes
can be kept in main memory, but the grammar and the symbol index are accessed by disk seeks.
When a word is requested, it is translated to its index in the lexicon and passed to a program that
traverses the hierarchy on disk. Each occurrence of the word is located using the symbol index,
and the expansion of each rule is calculated and returned. These rules are expressed as word
numbers, and the numbers are translated back into words before being returned to the client. Along
with each rule, the non-terminal representing that rule is returned, to allow queries to be made on
that rule, and so on, recursively. Each query involves at least two disk seeks per item returned, but
network transfer time is usually the bottleneck.

Stop-words are implemented using the lexicon frequency file, and are operationally defined as the
100 most frequent words. This level is user-adjustable as shown in Figure 5. If a phrase extends
the query word or phrase by merely adding a stop-word, for example the phrase the grammar
based on the word grammar, that phrase is considered uninteresting. In this case, all occurrences

tokenizer SEQUITUR indexer

traverse
hierarchyJava client word

translation

text
word

numbers
textual

grammar

disk-based
grammar

with inverted
index

lexicon
word frequencies
document index

phrases
as numbers

phrases
as words

socket
interface

run-time

Figure 9 The distributed, disk-based browsing system

of the phrase the grammar are sought, and processing continues recursively until all contribute at
least one word that is not a stop-word to the query word or phrase. This recursive expansion is
performed by the “traverse hierarchy” process in Figure 9.

As mentioned earlier, an improved stemming feature has been added to the user interface: Figure
10 shows its effect. A collection of six months of the Journal of Biological Chemistry was
queried with the word enzymes. The terms returned include methods enzymol, a commonly-used
abbreviation for the journal Methods in Enzymology, both restriction enzymes and restriction
enzyme, enzymatic activities, and so on. Stemming is implemented by invoking a black-box
stemming algorithm (we use the Lovins, 1968, stemmer) on the user’s query word in the “word
translation” block of Figure 9, and expanding that stem against the lexicon file to locate all words
that match. Then each such word is processed to find the non-trivial rules that contain it, as
described above, and the results are concatenated and sorted before displaying them to the user. In
our initial tests, stemming appears to significantly enhance the list of terms. We plan to improve
stemming further by merging terms when their stemmed versions are identical. For example, the
terms restriction enzymes and restriction enzyme in the second and third rows of Figure 10
would become a single entry.

5 Discussion
The intention of this work is to give the user a good idea of the subject matter of the text in a large
collection, and present it in manageable chunks determined by the branching factor of each rule.
This is especially evident at the very top level, where, in the examples of Figure 4b and Figure 8,
the list of rules involving the word grammar provides a plausible taxonomy of concepts involving
grammars. The terms in the list bear some resemblance to entries in a traditional book index.
Whereas they may not always be of the same quality as hand-crafted entries, they do have the
advantage of being inferred automatically. For multi-gigabyte corpuses, this advantage becomes
significant.

The hierarchy produced by our technique contrasts with primitive methods such as keyword-in-
context (KWIC) displays, where all occurrences of a search term are displayed along with the
surrounding context. KWIC indexes do not scale, because the amount displayed for any given
search term depends linearly on the size of the collection: this is presumably why they have fallen
out of use. In our hierarchical approach, the amount displayed grows logarithmically with
collection size (although we have not yet been able to establish this result theoretically).

Here are two examples that underscore this point. First, consider the discovery of the acronym
PCFGs that was made when analyzing Figure 4. The fact that this acronym co-occurs with the
phrase several times would not be visually apparent in a KWIC display, and would not receive much
prominence. Its embodiment in a rule, however, ensures that the SEQUITUR-based method puts it
near the top of the list of occurrences. Second, the word index occurs 487 times in the collection
used to create Figure 1, in two hundred separate news articles. A KWIC display of each of these

Figure 10 Query on enzymes on the Journal of Biological
Chemistry collection using stemming

occurrences would be less than useful. The display would have been cluttered up with many junk
occurrences of index htm and index html, and the key phrase indexing and retrieval would be
unlikely to be spotted, as would the other key phrases citation index, knowledge index, indexing
nlp, web index, and so on.

Although SEQUITUR’s phrases give a good general idea of the structure of the grammar and the
frequency of the phrases, there are several situations where phrases are given too much
importance—or too little. Phrases receive artificially high frequency when an author quotes
sections of a paper in its abstract, or—worse still—when the title of a paper is repeated in the
header of every page. It is usually obvious when this has happened because phrases become very
long and occur at the same level of the grammar. Similar problems have been encountered with the
headers of news articles, and with references and bibliographies.

SEQUITUR’s grammars often result in phrase boundary conflicts. For example, the phrase indexing
and retrieval occurs twice in the first column of Figure 1. (The first occurrence is made up of the
symbols indexing and and retrieval, and the second of indexing and and retrieval.) Due to these
conflicts, important phrases may be overlooked because they are not listed as prominently as they
should be. This suboptimality also gives rise to uninteresting phrases such as a mobile robot in
Figure 5. This is an unfortunate side-effect of the greedy algorithm that we use for efficiency
reasons. However, this problem will be corrected by the new stemming process, which will post-
process the phrases before they are displayed to the user and amalgamate entries for phrases that
stem to the same thing.

Another problem results from our definition of common words as the most frequently-occurring
terms in the collection. Sometimes words are inappropriately classed as “common.” For example,
in one subcollection of the Computer Science Technical Report library, neural was found to be
among the one hundred most frequently used words. In the Journal of Biological Chemistry, the
word amino was deemed a stop-word, so the phrase amino acid was expanded as an uninteresting
extension of acid. We are experimenting with the idea of having a fixed list of stop-words rather
than inferring them from the collection on a frequency basis. The static list could be formed based
on the intersection of frequent words from a number of diverse collections.

6 Conclusion
The thrust of this research is to build systems that let users become familiar with the content of a
digital library by browsing a hierarchical structure of phrases that are repeated frequently within the
text. Despite our purely lexical approach to phrase identification, the structures that are obtained in
practice frequently correspond to plausible conceptual hierarchies. This permits large corpora of
text to be browsed efficiently, and any particular document can be accessed in a number of steps
that varies with the logarithm of the size of the corpus.

The method can be used for very large collections, and its operation has been demonstrated on a
text base of 62 million words. We have recently developed a bounded-memory version of the
SEQUITUR algorithm that allows us to process texts of arbitrary size, although some work still needs
to be done to make all processing steps operate successfully with unbounded collections.

We believe that in the context of large information bases such as the New Zealand Digital Library,
this interface will obviate the “query and hope” approach to browsing, and allow users to develop
an intuition that would otherwise be very difficult to acquire.

References
Bell, T.C., Cleary, J.G. and Witten, I.H. (1990) Text compression. Prentice Hall, Englewood Cliffs, New Jersey.

Chang, S.J. and Rice, R.E. (1993) “Browsing: a multidimensional framework,” Annual Review of Information
Science and Technology, 28, 231–276.

Cutting, D., Karger, D., Pedersen, J. & Tukey, J.W. (1992) “Scatter/Gather: A Cluster-based Approach to Browsing
Large Document Collections,” Proc. 15th Annual International ACM/SIGIR, Copenhagen.

Harman, D.K.E. (1992–96) “Proc. TREC Text Retrieval Conference,” Gaithersburg, MD: National Institute of
Standards Special Publication, 500-207, 500-215, 500-225, 500-236.

Hearst, M. and Karadi, C. (1997) “Cat-a-Cone: An Interactive Interface for Specifying Searches and Viewing
Retrieval Results using a Large Category Hierarchy” Proc. ACM/SIGIR, Philadelphia, PA, July.

Lovins, J.B. (1968) “Development of a stemming algorithm,” Mechanical Translation and Computation, 11(1–2),
22–31.

Nevill-Manning, C.G. (1996) “Inferring sequential structure,” D.Phil. thesis, Computer Science Department,
University of Waikato, New Zealand.

Nevill-Manning, C.G. and Witten, I.H. (1997) “Identifying Hierarchical Structure in Sequences: A linear-time
algorithm ,” Journal of Artificial Intelligence Research, 7, 67-82.

Nevill-Manning, C.G., Witten, I.H. & Paynter, G.W. (1997) “Browsing in digital libraries: a phrase-based
approach,” Proc. 2nd ACM International Conference on Digital Libraries, R.B. Allen and E. Rasmussen
(Eds.) Philadelphia, PA, pp. 230-236.

Salton, G. (1989) Automatic Text Processing: the transformation, analysis and retrieval of information by
computer. Reading, Mass.: Addison Wesley.

Storer, J.A. and Szymanski, T.G. (1982) “Data compression via textual substitution.” J Association for Computing
Machinery 29(4), 928–951.

Witten, I.H., Nevill-Manning, C.G., and Cunningham, S.J. (1996) “Building a digital library for computer science
research: technical issues,” Proc. Australasian Computer Science Conference, Melbourne, Australia, 534-
542.

Wolff, J.G. (1980) “Language acquisition and the discovery of phrase structure,” Language and Speech, 23(3), 255–
269.

Appendix: The S EQUITUR algorithm
The basic insight of the phrase-finding method is that any phrase which appears more than once
can be replaced by a grammatical rule that generates the phrase, and that this process can be
continued recursively. The result is a hierarchical representation of the original sequence. It is not a
grammar, for the rules are not generalized and are capable of generating only one string. (It does
provide a good basis for going on to infer a grammar, but that is beyond the scope of this
appendix.) A scheme that resembles the one developed here arose from the area of language
acquisition (Wolff, 1980). However, the algorithm we describe takes time linear in the length of
the input sequence, whereas Wolff’s is quadratic. This has allowed us to investigate sequences
containing several million tokens. Nevill-Manning (1996) and Nevill-Manning and Witten (1997)
gives a more comprehensive description of the SEQUITUR algorithm and its applications.

SEQUITUR forms a grammar from a sequence based on repeated phrases in it. The key difference
from conventional grammatical inference techniques, and from dictionary-based text compression
schemes (see e.g. Bell et al., 1990), is that a hierarchical structure is formed from the sequence.

Each repetition gives rise to a rule in the grammar, and is replaced by a non-terminal symbol,
producing a more concise representation of the sequence. It is this pursuit of brevity that drives the
algorithm to form and maintain the grammar, and as a by-product, provide a hierarchical structure
for the sequence.

We illustrate the algorithm using characters as phrase structure elements, although when applying
the method to browsing we generally use words. At the left of Figure 11a is a sequence that
contains the repeating string bc. Note that the sequence is already a grammar—a trivial one with a
single rule. To compress it, a new rule A → bc is formed, and both occurrences of bc are
replaced by A. The new grammar is shown at the right the Figure.

The sequence in Figure 11b shows how rules can be reused in longer rules. It is formed by
concatenating two copies of the sequence in Figure 11a. Since it represents an exact repetition,
compression can be achieved by forming the rule A → abcdbc to replace both halves of the

sequence. Further gains can be made by forming rule B → bc to compress rule A. This
demonstrates the advantage of treating the sequence, rule S, as part of the grammar—rules may be
formed in rule A in an analogous way to rules formed from rule S. These rules within rules
constitute the grammar’s hierarchical structure.

The grammars in Figures 11a and 11b share two properties:

p1: no pair of adjacent symbols appears more than once in the grammar;

p2: every rule is used more than once.

p1 can be restated as “every digram in the grammar is unique,” and will be referred to as digram
uniqueness. p2 ensures that each rule is useful, and will be called rule utility . These two
constraints exactly characterize the grammars that SEQUITUR generates.

Figure 11c shows what happens when these properties are violated. The first grammar contains
two occurrences of bc, so p1 does not hold. This introduces redundancy because bc appears twice.
In the second grammar, B is used only once, so p2 does not hold. If it were removed, the grammar
would become more concise.

The grammars in Figures 11a and 11b are the only ones for which both properties hold for each
sequence. However, there is not always a unique grammar with these properties. For example, the
sequence in Figure 11d can be represented by both of the grammars on its right, and they both

Sequence Grammar Sequence Grammar

a S → abcdbc S → aAdA
A → bc

b S → abcdbcabcdbc S → AA
A → aBdB
B → bc

c S → abcdbcabcdbc S → AA
A → abcdbc

d S → aabaaab S → AaA
A → aab

S → CC
A → bc
B → aA
C → BdA

S → AbAab
A → aa

Figure 11 Example sequences and grammars that reproduce them (a) a
sequence with one repetition; (b) a sequence with a nested repetition; (c) two
grammars that violate the two constraints; and (d) two different grammars for
the same sequence that obey the constraints

obey p1 and p2. We deem either grammar to be acceptable.

SEQUITUR’s operation consists of ensuring that both properties hold. When describing the
algorithm, the properties act as constraints. The algorithm operates by enforcing the constraints on
a grammar: when the digram uniqueness constraint is violated, a new rule is formed, and when the
rule utility constraint is violated, the useless rule is deleted. The next two sections describe how
this is performed.

Digram uniqueness

When a new symbol is observed, it is appended to rule S, the top-level rule. The last two symbols
of rule S—the new symbol and its predecessor—form a new digram. If it occurs elsewhere in the
grammar, the first constraint has been violated. To restore it, a new rule is formed with the digram
on the right-hand side, headed by a new non-terminal. The two original digrams are replaced by
this non-terminal. However, the appearance of a duplicate digram does not always result in a new
rule. If the new digram appears as the right-hand side of an existing rule, then no new rule need be
created: the digram is replaced by the non-terminal that heads the existing rule. The hierarchy is
formed and maintained by an iterative process. Changes ripple through the grammar, forming and
matching longer rules higher in the hierarchy.

Rule utility

So far, it seems that the right-hand side of any rule in the grammar will only ever be two symbols
long. However, longer rules are formed by the effect of the rule utility constraint, which ensures
that every rule is used more than once. When a new symbol is appended to the top-level rule, the
new digram that it creates may begin with a non-terminal symbol—which must of course be
defined elsewhere in the grammar. Suppose this new digram appears only once in the rest of the
grammar. Then a new rule will be defined to replace the digram. The fact that the non-terminal
symbol is only used in this new rule violates the rule utility constraint. Therefore the non-terminal
is removed from the grammar, its definition being incorporated into the new rule that has just been
formed. This is the mechanism for forming long rules: form a short rule temporarily, and if
subsequent symbols continue the match, allow a new rule to supersede the shorter one.

