Serialized Form


Package <Unnamed>

Class Counter extends java.lang.Object implements Serializable

serialVersionUID: 1L

Serialized Fields

m_val

int m_val
Integer value stored

Class GermanStemmer extends Stemmer implements Serializable

serialVersionUID: 1L

Serialized Fields

sb

java.lang.StringBuffer sb
Buffer for the terms while stemming them.


uppercase

boolean uppercase
Indicates if a term is handled as a noun.


substCount

int substCount
Amount of characters that are removed with substitute() while stemming.

Class IteratedLovinsStemmer extends LovinsStemmer implements Serializable

serialVersionUID: 1L

Class KEAFilter extends Filter implements Serializable

serialVersionUID: 1L

Serialized Fields

m_DocumentAtt

int m_DocumentAtt
Index of attribute containing the documents


m_KeyphrasesAtt

int m_KeyphrasesAtt
Index of attribute containing the keyphrases


m_MaxPhraseLength

int m_MaxPhraseLength
The maximum length of phrases


m_MinPhraseLength

int m_MinPhraseLength
The minimum length of phrases


m_numPhrases

int m_numPhrases
The number of phrases to extract.


m_KFused

boolean m_KFused
Is keyphrase frequency attribute being used?


m_DESCRreplace

boolean m_DESCRreplace
Should non-descriptors be replaced by corresponding descriptors?


m_APfeature

boolean m_APfeature
If m_RELused = true, should the feature of their appearance/non-appearance be used?


m_NODEfeature

boolean m_NODEfeature
Is the node degree (number of related terms in candidate set) being used?


m_LENGTHfeature

boolean m_LENGTHfeature
Is the length of a phrase in words being used?


m_Debug

boolean m_Debug
Flag for debugging mode


m_DisallowInternalPeriods

boolean m_DisallowInternalPeriods
Determines whether internal periods are allowed


m_MinNumOccur

int m_MinNumOccur
The minimum number of occurences of a phrase


m_NumFeatures

int m_NumFeatures
The number of features describing a phrase


m_TfidfIndex

int m_TfidfIndex

m_FirstOccurIndex

int m_FirstOccurIndex

m_KeyFreqIndex

int m_KeyFreqIndex

m_APIndex

int m_APIndex

m_NodeIndex

int m_NodeIndex

m_LengthIndex

int m_LengthIndex

m_PunctFilter

KEAPhraseFilter m_PunctFilter
The punctuation filter used by this filter


m_NumbersFilter

NumbersFilter m_NumbersFilter
The numbers filter used by this filter


m_Classifier

DistributionClassifier m_Classifier
The actual classifier used to compute probabilities


m_Dictionary

java.util.HashMap m_Dictionary
The dictionary containing the document frequencies


m_KeyphraseDictionary

java.util.HashMap m_KeyphraseDictionary
The dictionary containing the keyphrases


m_NumDocs

int m_NumDocs
The number of documents in the global frequencies corpus


m_ClassifierData

Instances m_ClassifierData
Template for the classifier data


m_Stemmer

Stemmer m_Stemmer
The default stemmer to be used


m_Stopwords

Stopwords m_Stopwords
The list of stop words to be used


m_vocabulary

java.lang.String m_vocabulary

m_vocabularyFormat

java.lang.String m_vocabularyFormat

m_CheckForProperNouns

boolean m_CheckForProperNouns
Determines whether check for proper nouns is performed

Class KEAPhraseFilter extends Filter implements Serializable

serialVersionUID: 1L

Serialized Fields

m_SelectCols

Range m_SelectCols
Stores which columns to select as a funky range


m_DisallowInternalPeriods

boolean m_DisallowInternalPeriods
Determines whether internal periods are allowed

Class LovinsStemmer extends Stemmer implements Serializable

serialVersionUID: 1L

Class NoStemmer extends Stemmer implements Serializable

serialVersionUID: 1L

Class NumbersFilter extends Filter implements Serializable

serialVersionUID: 1L

Class PorterStemmer extends Stemmer implements Serializable

serialVersionUID: 1L

Class SremovalStemmer extends Stemmer implements Serializable

serialVersionUID: 1L

Class Stemmer extends java.lang.Object implements Serializable

Class Stopwords extends java.lang.Object implements Serializable

Class StopwordsEnglish extends Stopwords implements Serializable

serialVersionUID: 1L

Class StopwordsGerman extends Stopwords implements Serializable

serialVersionUID: 1L

Class Vocabulary extends java.lang.Object implements Serializable

serialVersionUID: 1L

Serialized Fields

useSkos

boolean useSkos
Boolean describing which vocabulary format has been chosen: true if SKOS, false if text.


VocabularyEN

java.util.HashMap VocabularyEN
Vocabulary index


VocabularyENrev

java.util.HashMap VocabularyENrev
Vocabulary reverse index


VocabularyUSE

java.util.HashMap VocabularyUSE
Vocabulary non-descriptors - descriptors list


VocabularyREL

java.util.HashMap VocabularyREL
Vocabulary related terms


m_Stemmer

Stemmer m_Stemmer
The default stemmer to be used


m_Stopwords

Stopwords m_Stopwords
The list of stop words to be used


Package weka.classifiers

Class weka.classifiers.Classifier extends java.lang.Object implements Serializable

Class weka.classifiers.DistributionClassifier extends Classifier implements Serializable

Class weka.classifiers.FilteredClassifier extends DistributionClassifier implements Serializable

Serialized Fields

m_Classifier

Classifier m_Classifier
The classifier


m_Filter

Filter m_Filter
The filter


m_FilteredInstances

Instances m_FilteredInstances
The instance structure of the filtered instances

Class weka.classifiers.NaiveBayesSimple extends DistributionClassifier implements Serializable

Serialized Fields

m_Counts

double[][][] m_Counts
All the counts for nominal attributes.


m_Means

double[][] m_Means
The means for numeric attributes.


m_Devs

double[][] m_Devs
The standard deviations for numeric attributes.


m_Priors

double[] m_Priors
The prior probabilities of the classes.


m_Instances

Instances m_Instances
The instances used for training.


Package weka.core

Class weka.core.Attribute extends java.lang.Object implements Serializable

Serialized Fields

m_Name

java.lang.String m_Name
The attribute's name.


m_Type

int m_Type
The attribute's type.


m_Values

FastVector m_Values
The attribute's values (if nominal or string).


m_Hashtable

java.util.Hashtable m_Hashtable
Mapping of values to indices (if nominal or string).


m_Index

int m_Index
The attribute's index.

Class weka.core.FastVector extends java.lang.Object implements Serializable

Serialized Fields

m_Objects

java.lang.Object[] m_Objects
The array of objects.


m_Size

int m_Size
The current size;


m_CapacityIncrement

int m_CapacityIncrement
The capacity increment


m_CapacityMultiplier

double m_CapacityMultiplier
The capacity multiplier.

Class weka.core.Instance extends java.lang.Object implements Serializable

Serialized Fields

m_Dataset

Instances m_Dataset
The dataset the instance has access to. Null if the instance doesn't have access to any dataset. Only if an instance has access to a dataset, it knows about the actual attribute types.


m_AttValues

double[] m_AttValues
The instance's attribute values.


m_Weight

double m_Weight
The instance's weight.

Class weka.core.Instances extends java.lang.Object implements Serializable

Serialized Fields

m_RelationName

java.lang.String m_RelationName
The dataset's name.


m_Attributes

FastVector m_Attributes
The attribute information.


m_Instances

FastVector m_Instances
The instances.


m_ClassIndex

int m_ClassIndex
The class attribute's index


m_ValueBuffer

double[] m_ValueBuffer
Buffer of values for sparse instance


m_IndicesBuffer

int[] m_IndicesBuffer
Buffer of indices for sparse instance

Class weka.core.Queue extends java.lang.Object implements Serializable

Serialized Fields

m_Head

weka.core.Queue.QueueNode m_Head
Store a reference to the head of the queue


m_Tail

weka.core.Queue.QueueNode m_Tail
Store a reference to the tail of the queue


m_Size

int m_Size
Store the current number of elements in the queue

Class weka.core.Queue.QueueNode extends java.lang.Object implements Serializable

Serialized Fields

m_Next

weka.core.Queue.QueueNode m_Next
The next node in the queue


m_Contents

java.lang.Object m_Contents
The nodes contents

Class weka.core.Range extends java.lang.Object implements Serializable

serialVersionUID: 1L

Serialized Fields

m_RangeStrings

java.util.Vector m_RangeStrings
Record the string representations of the columns to delete


m_Invert

boolean m_Invert
Whether matching should be inverted


m_SelectFlags

boolean[] m_SelectFlags
The array of flags for whether an column is selected


m_Upper

int m_Upper
Store the maximum value permitted in the range. -1 indicates that no upper value has been set

Class weka.core.SerializedObject extends java.lang.Object implements Serializable

Serialized Fields

m_Serialized

byte[] m_Serialized
Stores the serialized object


m_Compressed

boolean m_Compressed
True if the object has been compressed during storage

Class weka.core.SparseInstance extends Instance implements Serializable

Serialized Fields

m_Indices

int[] m_Indices
The index of the attribute associated with each stored value.


m_NumAttributes

int m_NumAttributes
The maximum number of values that can be stored.

Class weka.core.UnassignedClassException extends java.lang.RuntimeException implements Serializable

Class weka.core.UnassignedDatasetException extends java.lang.RuntimeException implements Serializable

Class weka.core.UnsupportedClassTypeException extends WekaException implements Serializable

Class weka.core.WekaException extends java.lang.Exception implements Serializable


Package weka.filters

Class weka.filters.DiscretizeFilter extends Filter implements Serializable

Serialized Fields

m_DiscretizeCols

Range m_DiscretizeCols
Stores which columns to Discretize


m_NumBins

int m_NumBins
The number of bins to divide the attribute into


m_CutPoints

double[][] m_CutPoints
Store the current cutpoints


m_UseMDL

boolean m_UseMDL
True if discretisation will be done by MDL rather than binning


m_MakeBinary

boolean m_MakeBinary
Output binary attributes for discretized attributes.


m_UseBetterEncoding

boolean m_UseBetterEncoding
Use better encoding of split point for MDL.


m_UseKononenko

boolean m_UseKononenko
Use Kononenko's MDL criterion instead of Fayyad et al.'s


m_FindNumBins

boolean m_FindNumBins
Find the number of bins using cross-validated entropy.


m_UseEqualFrequency

boolean m_UseEqualFrequency
Use equal-frequency binning if unsupervised discretization turned on

Class weka.filters.Filter extends java.lang.Object implements Serializable

Serialized Fields

m_Debug

boolean m_Debug
Debugging mode


m_OutputFormat

Instances m_OutputFormat
The output format for instances


m_OutputQueue

Queue m_OutputQueue
The output instance queue


m_OutputStringAtts

int[] m_OutputStringAtts
Indices of string attributes in the output format


m_InputStringAtts

int[] m_InputStringAtts
Indices of string attributes in the input format


m_InputFormat

Instances m_InputFormat
The input format for instances


m_NewBatch

boolean m_NewBatch
Record whether the filter is at the start of a batch